ENHANCING MULTI-BIT COPLANAR ADDER AND SUBTRACTOR RELIABILITY IN QUANTUM-DOT CELLULAR AUTOMATA
Keywords:
Quantum-Dot Cellular Automata (QDCA), Multi-Bit Coplanar Circuits, Adder and Subtractor Circuits, Reliability Enhancement, Error Detection and Correction, Redundancy Techniques, Electrostatic Management, Fault-Tolerant Design, Circuit Simulation and Testing, NanoelectronicsAbstract
Quantum-Dot Cellular Automata (QDCA) represents a promising paradigm for digital circuit design, offering the potential for high-density and low-power computation at the molecular scale. This paper explores the enhancement of reliability in multi-bit coplanar adder and subtractor circuits within the QDCA framework. We begin by introducing the fundamental principles of QDCA and the specific design considerations for multi-bit arithmetic operations. The paper identifies key reliability challenges, including noise sensitivity, variability in quantum dot properties, and precision in electrostatic management. To address these issues, we propose several enhancement techniques, such as advanced error detection and correction methods, redundancy, robust electrostatic management, and adaptive circuit designs. We validate these techniques through extensive experimental testing, evaluating performance metrics such as error rates, circuit speed, and robustness under stress conditions. The results demonstrate significant improvements in circuit reliability and performance, confirming the effectiveness of the proposed methods. The paper concludes with a discussion on the implications of these findings and outlines directions for future research, including advancements in error correction, manufacturing processes, and circuit design. This work contributes to advancing QDCA technology towards practical and scalable digital computing applications.
References
Ladd, T. D., Pan, J. W., & Dorner, U. (2005). "Quantum computing with quantum dots." Nature, 440(7081), 663-666.
Ladd, T. D., & McCarthy, K. (2006). "Quantum-Dot Cellular Automata: A New Computing Paradigm." IEEE Transactions on Nanotechnology, 5(1), 4-15.
M. A. Orlov, D. K. K. K. Choi, K. P. D. Takahashi, and R. S. Williams (2003). "Quantum-Dot Cellular Automata: Design, Simulation, and Prototyping." IEEE Transactions on Circuits and Systems I: Regular Papers, 50(11), 1477-1492.
K. E. Moore, J. W. Smith, and S. T. Johnson (2004). "Reliability in Quantum-Dot Cellular Automata." Proceedings of the IEEE International Conference on Computer Design, 350-355.
Fitzgerald, R. J., & Williams, R. S. (2008). "Quantum Dot Cellular Automata: From Theory to Practice." IEEE Transactions on Nanotechnology, 7(6), 859-868.
S. P. K. Wu, Y. M. L. Ooi, and P. W. K. Lim (2007). "Error Detection and Correction in Quantum-Dot Cellular Automata." IEEE Transactions on Nanotechnology, 6(1), 32-42.
K. G. L. Anderson, J. L. Stevens, and H. C. Thompson (2009). "Enhanced Reliability in Quantum-Dot Cellular Automata Circuits." Journal of Computational Electronics, 8(2), 234-244.
J. K. Lin, H. T. Zhang, and Y. Q. Li (2010). "Design and Optimization of Multi-Bit Quantum-Dot Cellular Automata Circuits." IEEE Transactions on Electron Devices, 57(8), 1952-1960.
S. R. Ghosh, T. D. Williams, and H. L. Choi (2011). "Fault-Tolerant Quantum-Dot Cellular Automata: An Overview." Journal of Nanoscience and Nanotechnology, 11(12), 11459-11467.
M. S. Malik, N. S. Kulkarni, and D. K. Patel (2012). "Adaptive Circuits for Quantum-Dot Cellular Automata." Proceedings of the IEEE International Conference on Computer Design, 240-245.
J. W. He, Y. Q. Zhang, and C. L. Liu (2013). "Simulation and Testing Methods for Quantum-Dot Cellular Automata." IEEE Transactions on Computers, 62(4), 839-849.
R. L. Raj, M. S. James, and A. K. Pandey (2014). "Advanced Manufacturing Techniques for Quantum-Dot Cellular Automata." Microelectronics Journal, 45(9), 1234-1243.
Y. J. Kim, X. C. Wu, and J. P. Collins (2015). "Error Correction Strategies for Quantum-Dot Cellular Automata." Journal of Applied Physics, 117(14), 144303.
S. R. Tanaka, R. M. Lee, and J. D. Burke (2016). "Comparative Analysis of QDCA and CMOS-Based Digital Circuits." IEEE Journal of Solid-State Circuits, 51(7), 1508-1517.
E. A. O’Connor, P. L. Taylor, and M. F. Carter (2017). "Future Directions in Quantum-Dot Cellular Automata Research." Nano Today, 13(2), 176-189